An SOI CMOS-Based Multi-Sensor MEMS Chip for Fluidic Applications †
نویسندگان
چکیده
An SOI CMOS multi-sensor MEMS chip, which can simultaneously measure temperature, pressure and flow rate, has been reported. The multi-sensor chip has been designed keeping in view the requirements of researchers interested in experimental fluid dynamics. The chip contains ten thermodiodes (temperature sensors), a piezoresistive-type pressure sensor and nine hot film-based flow rate sensors fabricated within the oxide layer of the SOI wafers. The silicon dioxide layers with embedded sensors are relieved from the substrate as membranes with the help of a single DRIE step after chip fabrication from a commercial CMOS foundry. Very dense sensor packing per unit area of the chip has been enabled by using technologies/processes like SOI, CMOS and DRIE. Independent apparatuses were used for the characterization of each sensor. With a drive current of 10 µA-0.1 µA, the thermodiodes exhibited sensitivities of 1.41 mV/°C-1.79 mV/°C in the range 20-300 °C. The sensitivity of the pressure sensor was 0.0686 mV/(Vexcit kPa) with a non-linearity of 0.25% between 0 and 69 kPa above ambient pressure. Packaged in a micro-channel, the flow rate sensor has a linearized sensitivity of 17.3 mV/(L/min)-0.1 in the tested range of 0-4.7 L/min. The multi-sensor chip can be used for simultaneous measurement of fluid pressure, temperature and flow rate in fluidic experiments and aerospace/automotive/biomedical/process industries.
منابع مشابه
Design and Simulation of a Fluidic Micro-Bio-Sensor Based on Resonator Array
In this paper, a fluidic biosensor with possibility to fabricate by Micro-Electro-Mechanical Systems (MEMS) technology is proposed for biomedical mass detection and lab-on-chip applications. This is designed by electromechanical coupling of harmonic micromechanical resonators with harmonic springers as a mechanical resonator array. It can disperse mechanical wave along the array by electrostati...
متن کاملRevolutionary Innovation in System Interconnection: A New Era for the IC
This paper describes novel microscale electrical, optical, and fluidic interconnect networks to address off-chip interconnect challenges in high-performance computing systems as well as to enable 3D heterogeneous integration of CMOS and MEMS/sensors.
متن کاملHighly Integrated MEMS-ASIC Sensing System for Intracorporeal Physiological Condition Monitoring
In this paper, a highly monolithic-integrated multi-modality sensor is proposed for intracorporeal monitoring. The single-chip sensor consists of a solid-state based temperature sensor, a capacitive based pressure sensor, and an electrochemical oxygen sensor with their respective interface application-specific integrated circuits (ASICs). The solid-state-based temperature sensor and the interfa...
متن کاملUncooled Infrared Radiation Focal Plane Array with Low Noise Pixel Driving Circuit
We have analyzed the dominant noise sources in the driving circuit of an uncooled infrared radiation focal plane array fabricated on a silicon-on-insulator (SOI) substrate by 0.35 μm CMOS technology and bulkmicromachining. We found no noise property of SOI-MOSFET inferior compared to those of NMOSs formed on SOI and bulk substrate, respectively. In addition, we reduced the total noise of the se...
متن کاملDesign Rules for Wafer Level Packaging of MEMS, CMOS-MEMS Integration, and Smart Systems using Anodic Bonding and Lateral Feedthroughs
The advantages of wafer level packaging (WLP) are widely recognized across a range of applications MEMS, IC’s Smart systems, CMOS-MEMS integration, System on Chip (SoC), Package in Package (PiP), Package on Package (PoP ) etc. Key benefits include true chip-size package, reduced cost of interconnects (by creating at wafer-level rather than back-end chip-scale packaging), and minimising test and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 16 شماره
صفحات -
تاریخ انتشار 2016